

Design, Manufacture and Project (MMME2044)

Revision for Spring exam

Dr Hengan Ou

Coates B80a, email: <u>h.ou@nottingham.ac.uk</u>

Overview

- Outline of the format & scope of the exam paper and a plan for revision
- Summary of examined topics on the functions, types and methods of design and selection machine elements

You need to check the timetable/location of the MMME2044 exam

Learning objectives of MMME2044

- The overall aim of this module is to
 - enhance your understanding, ability/skills in design, e.g. group and individual projects,
 - be able to communicate efficiently of design in using CAD software and in presenting a good quality of drawings,
 - In the selection of components used in machine systems.
 In the selection of components used in machine systems.
- The Spring exam is only to assess your understanding and knowledge of <u>taught</u> <u>topics covered in lectures.</u>
- To avoid heavy work load for revision, <u>NOT all taught topics in both semesters</u> will be included in the exam with **details given in the following slides**.

How is MMME2044 module assessed?

Coursework elements	60%
CAE tasks (Autumn & Spring)	formative
Design & Make Project	
 Design (Autumn) 	(20 %)
 Make and Test (After exams) 	(10%)
Individual Project (Spring, almost done now)	(30 %)
Examination – 2 hours	40%
Close book in-person exam	
	 Coursework elements CAE tasks (Autumn & Spring) Design & Make Project Design (Autumn) Make and Test (After exams) Individual Project (Spring, almost done now) Examination – 2 hours Close book in-person exam

What could be included in the exam?

Topics could be included in the June exam covered in both autumn and spring semesters:

- ✓ Machine Elements
 - Bearings (1 & 2)
 - Bolted joints
 - Brakes and Clutches
 - > Gears (1, 2 & 3)
 - Linkage mechanisms

✓ Design Methods

- Design for manufacture/assembly
- Sustainable and inclusive design

What will not be included in the exam?

A list of topics to be excluded from the exam

\odot Lecture topics

- Machine system design & Selection of Springs
- Pneumatics and Hydraulics
- Seals
- Shaft design

Group D&M (Air Motor) and individual (Gearbox Actuator) projects
 PDR and CDDR related, design, calculations or GA and detail
 drawings

 \odot Any CAE Solidworks related tasks and topics

MMME2044 Exam format

• Two Sections:

Section A – Machine elements (2 questions)

Section B – Design methods (1 question)

- Answer All Three questions
- Each question carries 20 marks
- Close book in-person exam

Note: No formula sheet for exam, instead equations will be given at the end of a question (check past exam papers as examples)
However, you need to know basic concepts and a few fundamental equations, e.g. gear module, m=d/N or gear ratio, Z=ω1/ω2=d2/d1=N2/N1 as well as unit conversion, e.g. Pa ⇔Mpa or rpm ⇔ rad/sec

A few tips and hints for revision

- Review lecture slides and handout materials
 - Study contents & worked examples from lecture slides, handouts & video
 recordings (all available on Moodle/Echo360)
 - Be familiar with the types of questions from past exam papers
 - True or False questions in Section A (1/2 mark each) (see Lecture slides examples)
- Format of MMME2044 exam (close book in person)
 - TWO hours duration
 - TWO Questions on Machine Elements and ONE Question on Design Methods (20 marks for each question).
- Except 2021-22 exam, the papers of other years were open book exams.
- Be careful about the use of <u>CORRECT units</u> in calculations.

Additional support for revision

- 1) 16:00-18:00, Today, 12th May, Coates C19
- 2) 14:00-16:00, Monday, 15th May, Physics B1
- 3) 16:00-18:00, Friday, 19th May, Coates C19

• You're welcome to get in touch via email if you have further questions, <u>I'll try to respond as prompt as I can</u>

Revision for Spring exam

End of Part 1

Revision for Spring exam

<u>Part 2</u>

A note for the revision session

Revision

Part 2

- The plan of this session is
 - > to summarise the key learning objectives and
 - to highlight some important concepts, methods of machine elements and design considerations of related topics.
- The contents and examples used in the slides are to support the points of discussion <u>but not</u> to give an indication of any possible questions/solutions for this year's exam.

Section A: Machine elements

Revision

Part 2

Topics for revision:

- Bearings (1 & 2)
- Bolted joints
- Brakes and Clutches
- Gears (1, 2 & 3)
- Linkage mechanisms

Section A: Bearings

Revision

Part 2

You should

- ✓ be familiar with the <u>three types of bearings</u> (plain, hydrodynamic & rolling element) and their applications;
- ✓ know how to design and select a suitable plain (boundary lubricated) bearing, understand the working mechanism of hydrodynamic bearing and be familiar with Stribeck curve;
- ✓ be able to determine the life of rolling element bearing, design suitable bearing mounting arrangement to take radial and axial forces.

V, ft/min

W = YbD

Wear factor, K is a parameter that $K = \frac{W}{FVt}$ correlates wear, loading & life

Section A: Bearings

Rolling Element Bearings

Types, loading conditions, location & other considerations, e.g. misalignment,

lubrication/seal and load taken from one part to another

Bearing life calculation

 $L_{10} = \left(\frac{C}{P}\right)^q$

L₁₀ = basic rating life, millions of revolutions (10⁶)

- C = basic dynamic load rating, N
- P = equivalent dynamic bearing load, N
- q = exponent of the life equation

(3 for ball & 10/3 for roller bearings)

$$F_{m} = \sqrt[q]{\frac{F_{1}^{q}U_{1} + F_{2}^{q}U_{2} + F_{3}^{q}U_{3} \cdots}{U}}$$

Revision

Part 2

Example for bearing location

Interference fit for rotating ring **Clearance fit** for stationary ring

Section A: Bolted joints

Bolted joint or fastener is a device commonly used to connect two or more components in a mechanical system.

Bolted joints

- ✓ Pre-tension
- ✓ Stiffness of bolt & clamped members
- ✓ Strength of bolted joints

You should

- ✓ be familiar with different types of joints and applications
- ✓ understand design considerations of pre-tensioned bolt joints

✓ be able to determine the stiffness of the bolt & clamped members, resultant loads and safety factor of pre-tensioned joint

4xsocket screws to connect cylinder head & crankcase in a 2stroke engine

Section A: Bolted joints

• Recommended pre-tension for nonpermanent & permanent joints

$$F_i = 0.75A_s\sigma_P \quad F_i = 0.9A_s\sigma_P$$

• Resultant loads

$$F_b = \frac{K_b P}{K_b + K_c} + F_i > 0$$

$$F_c = \frac{K_c P}{K_b + K_c} - F_i \le 0$$

• With a reserve factor of *no*, make sure

$$NF_i \ge n_0 P \frac{K_c}{K_b + K_c}$$

• Calculate the tightening torque $T = KF_i d$

BS 3692:2001 Metric bolt strength designation

$$\sigma_{UTS} = 8 \times 100 = 800(MP_a)$$

$$\sigma_Y = 0.8 \times \sigma_{UTS} = 640(MP_a)$$

$$\sigma_P = 0.85 \times \sigma_Y = 544(MP_a)$$

Section A: Brakes & Clutches

- Brakes enable slow down the speed of a system by absorbing energy & Clutches allow smooth connection of two rotating shafts
- Friction brakes/clutches:
 - ✓ Disc brakes✓ Drum brakes

It is useful to

- ✓ be familiar with the general layout and working mechanisms of disc brakes;
- Be familiar with the working mechanism of drum brakes;
- ✓ be familiar with terms, e.g. leading or trailing shoes, selection considerations for suitable frictional materials.

Revision Part 2

Pressur

Section A: Gears (1, 2 & 3)

Revision Part 2

Gears are toothed members of various types to transmit power between shafts reliably and durably

You should

✓ know different types of gears and how they are classified

✓ be familiar with gear's terminology and fundamental equations;

- ✓ be able to calculate gear ratio & draw schematic diagram of a gear train (simple, compound, reverted or planetary);
- ✓ be able to evaluate a gear train used in, e.g. cars and wind turbines

✓ be able to use AGMA standard to do gear stress calculation and design analysis

Section A: Gears 1

Gear fundamentals

Common gear types and classification

- e.g. Spur, helical gears, bevel gears and worm gears classified by **shaft arrangement**

Key design parameters

Module (m=D/N), number of teeth (N), Pressure angle (ϕ)

For a pair of spur gears to work properly both should have the same module (m) and pressure angle (ϕ)

Don't need to memorise equations for other parameters

Basic gear ratio equation:

$$Z = \frac{\omega_1}{\omega_2} = \frac{d_2}{d_1} = \frac{N_2}{N_1}$$

Section A: Gears 2

Revision Part 2

For simple and compound trains

 $Z = \frac{\omega_{In}}{\omega_{Out}} = \pm \frac{\text{product of number of teeth on wheels}}{\text{product of number of teeth on pinions}}$

For a planetary train

For a planetary train $Z = \frac{\omega_F - \omega_A}{\omega_L - \omega_A} = \pm \frac{\text{product of number of teeth on wheels}}{\text{product of number of teeth on pinions}} \qquad \text{A Simple teel.} \qquad \text{A Compound train} \\ Z = \frac{\omega_1}{\omega_2} = -\frac{D_2}{D_1} = -\frac{N_2}{N_1} \qquad \text{A Compound train} \\ Z = \frac{\omega_1}{\omega_4} = \frac{N_2 N_4}{N_1 N_3}$

It is useful to have a look of more examples from lecture slides.

Section A: Gears 3

Transmitted Common types of gear failure and their causes force $W_{T} = \frac{60 \times 10^{3} P}{\pi d_{1} n_{1}} (kN) \qquad W_{T} = \frac{P}{V_{d_{1}}}$ **Transmitted force** LINE OF CENTRES PRESSURE PITCH CIRCLE ANGLE **PITCH POINT AGMA equations for bending & contact stresses** POINT OF CONTACT PITCH CIRCLE BASE $\sigma = W_t K_O K_V K_S \frac{1}{Fm} \frac{K_H K_B}{Y.}$ **Bending stress** Force from pinion to gear $\sigma_{C} = Z_{e} \sqrt{W_{t} K_{O} K_{V} K_{S} \frac{K_{H}}{Fd} \frac{Z_{R}}{Z_{L}}}$ Contact stress AGMA equations for allowable bending & contact stresses Make sure $\sigma_{all} = \frac{\sigma_{FP}}{S_E} \frac{Y_N}{Y_{\rho}Y_{\tau}}$ $\sigma \leq \sigma_{all}$ $\sigma_c \leq \sigma_{C,all}$ Allowable bending stress

 $\sigma_{C,all} = \frac{\sigma_{HP}}{S_{HP}} \frac{Z_N Z_W}{Y_0 Y_-}$

Allowable contact stress

Section A: Linkage mechanisms

Linkage mechanisms use links, joints and linkage chains to enable transformation of motion, force and power in a machine system.

You should

- ✓ be familiar with the terminology of Degree of Freedom (DoF), links and different types of joints;
- ✓ be able to use Gruebler's equation to calculate DoF of a linkage.

Gruebler's equation:
$$M = 3(L - 1) - 2J$$

a means to determine DoF and characteristics of a linkage

Slider is considered a link, L=4,
Piston sliding as a joint, J=4
M = 3*(4-1) - 2*4 = 1

Revision

Part 2

A slider-crank mechanism for an IC engine

Section B: Design methods

Revision

Part 2

Topics for revision:

- Design for Manufacture/Assembly
- Sustainable and inclusive design

Section B: Design for Manufacturing & Assembly Part 2

You should

- ✓ understand that DFMA is a systematic approach and a series of guidelines for
 - simplifying the product structure,
 - reducing parts count, manufacturing & assembly cost,
 - quantifying improvements.
- \checkmark be familiar with general DFA and DFM guidelines
- ✓ be able to calculate design efficiency of assembly in practical applications
- ✓ be able to apply the DFMA methods in design.

Section B: Design for Manufacturing & Assembly

machined, $4 \times 2.2 \times 1$)

Section B: Sustainable and inclusive design

Revision

Part 2

- ✓ understand the concept and general principles of sustainable and inclusive design
- ✓ be able to use sustainable design methods, e.g. product lifecycle assessment and the Six Rs approach in practical design situations
- ✓ be able to use general inclusive design methods in practical design situations
- ✓ be able to calculate Energy Return on Investment (EROI) and costeffectiveness with a given scenario

SEM Survey of MMME2044 Module Design, Manufacture and Project

- Take a few minutes to complete the SEM survey use the QR code or access link https://bluecastle-uk-surveys.nottingham.ac.uk
- It would be useful if you can complete the SME survey questions on
 - If you have learnt something useful and enhanced your knowledge and skills in design
 - If you work well with Module Conveners, Design Tutors, Technicians, etc, in MMME2044 activities
 - What can be done for better and more efficient learning in the future

Revision for Spring exam

End of Part 2

Revision for Spring exam

Part 3 Questions and answers

Gook luck with your MMME2044 revision & exam

For any additional questions?

You may join in the additional support sessions